15 resultados para Uterine prolapse

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uteroplacental insufficiency has been shown to impair insulin action and glucose homeostasis in adult offspring and may act in part via altered mitochondrial biogenesis and lipid balance in skeletal muscle. Bilateral uterine vessel ligation to induce uteroplacental insufficiency in offspring (Restricted) or sham surgery was performed on day 18 of gestation in rats. To match the litter size of Restricted offspring, a separate cohort of sham litters had litter size reduced to five at birth (Reduced Litter), which also restricted postnatal growth. Remaining litters from sham mothers were unaltered (Control). Offspring were studied at 6 mo of age. In males, both Restricted and Reduced Litter offspring had reduced gastrocnemius PPAR γ coactivator-1α (PGC-1 α) mRNA and protein, and mitochondrial transcription factor A (mtTFA) and cytochrome oxidase (COX) III mRNA (P < 0.05), whereas only Restricted had reduced skeletal muscle COX IV mRNA and protein and glycogen (P < 0.05), despite unaltered glucose tolerance, homeostasis model assessment (HOMA) and intramuscular triglycerides. In females, only gastrocnemius mtTFA mRNA was lower in Reduced Litter offspring (P < 0.05). Furthermore, glucose tolerance was not altered in any female offspring, although HOMA and intramuscular triglycerides increased in Restricted offspring (P < 0.05). It is concluded that restriction of growth due to uteroplacental insufficiency alters skeletal muscle mitochondrial biogenesis and metabolic characteristics, such as glycogen and lipid levels, in a sex-specific manner in the adult rat in the absence of impaired glucose tolerance. Furthermore, an adverse postnatal environment induced by reducing litter size also restricts growth and alters skeletal muscle mitochondrial biogenesis and metabolic characteristics in the adult rat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ovarian follicles and oviducal glands have structural organisations similar to other chondrichthyans. Sperm are stored in the oviducal gland of all maturing and mature animals throughout the year and throughout pregnancy. Microscopic features of the uterine epithelium suggest nutrients are supplied to developing embryos without placenta formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the mechanisms for the previously reported development of adult cardiac hypertrophy in male rats following growth restriction, the levels of oxidative stress and activation of signaling kinases were measured in the left ventricle (LV) of adult rat offspring. In experiment one, bilateral uterine vessel ligation to induce uteroplacental insufficiency and growth restriction in the offspring (Restricted) or sham surgery was performed during pregnancy. Litters from sham mothers had litter size either reduced (Reduced Litter), which also restricted postnatal growth, or were left unaltered (Control). In males, Reduced Litter offspring had increased LV phosphorylation of AMPKa, p38 MAPK and Akt compared with Restricted and Controls (P,0.05). In females, both Restricted and Reduced Litter adult offspring had increased LV phosphorylation of p38 MAPK and Akt, however, only Restricted offspring had increased phosphorylation of AMPKa (P,0.05). In addition, only Restricted male offspring displayed LV oxidative stress (P,0.05). Experiment two investigated in mothers exposed to uteroplacental insufficiency or sham surgery the effects of cross-fostering offspring at birth, and therefore the effects of the postnatal lactational environment. Surprisingly, the cross-fostering itself resulted in increased LV phosphorylation of AMPKa and Akt in females and increased phosphorylation of Akt in males compared with Control non-cross-fostered offspring (P,0.05). In conclusion, kinase signaling in the adult LV can be programmed by uteroplacental insufficiency induced growth restriction in a gender-specific manner. In addition, the heart of adult rats is also sensitive to programming following the postnatal intervention of cross-fostering alone as well as by postnatal growth restriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fetal growth restriction is associated with reduced pancreatic ß-cell mass, contributing to impaired glucose tolerance and diabetes. Exercise training increases ß-cell mass in animals with diabetes and has long-lasting metabolic benefits in rodents and humans. We studied the effect of exercise training on islet and ß-cell morphology and plasma insulin and glucose, following an intraperitoneal glucose tolerance test (IPGTT) in juvenile and adult male Wistar-Kyoto rats born small. Bilateral uterine vessel ligation performed on day 18 of pregnancy resulted in Restricted offspring born small compared with shamoperated Controls and also sham-operated Reduced litter offspring that had their litter size reduced to five pups at birth. Restricted, Control, and Reduced litter offspring remained sedentary or underwent treadmill running from 5 to 9 or 20 to 24 wk of age. Early life exercise increased relative islet surface area and ß-cell mass across all groups at 9 wk, partially restoring the 60–68% deficit (P = 0.05) in Restricted offspring. Remarkably, despite no further exercise training after 9 wk, ß-cell mass was restored in Restricted at 24 wk, while sedentary littermates retained a 45% deficit (P = 0.05) in relative ß-cell mass. Later exercise training also restored Restricted ß-cell mass to Control levels. In conclusion, early life exercise training in rats born small restored ß-cell mass in adulthood and may have beneficial consequences for later metabolic health and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that 4 wk of exercise training early in life normalizes the otherwise greatly reduced pancreatic β-cell mass in adult male rats born small. The aim of the current study was to determine whether a similar normalization in adulthood of reduced skeletal muscle mitochondrial biogenesis markers and alterations in skeletal muscle lipids of growth-restricted male rats occurs following early exercise training. Bilateral uterine vessel ligation performed on day 18 of gestation resulted in Restricted offspring born small (P < 0.05) compared with both sham-operated Controls and a sham-operated Reduced litter group. Offspring remained sedentary or underwent treadmill running from 5–9 (early exercise) or 20–24 (later exercise) wk of age. At 24 wk of age, Restricted and Reduced litter offspring had lower (P < 0.05) skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein expression compared with Control offspring. Early exercise training had the expected effect of increasing skeletal muscle markers of mitochondrial biogenesis, but, at this early age (9 wk), there was no deficit in Restricted and Reduced litter skeletal muscle mitochondrial biogenesis. Unlike our previous observations in pancreatic β-cell mass, there was no “reprogramming” effect of early exercise on adult skeletal muscle such that PGC-1α was lower in adult Restricted and Reduced litter offspring irrespective of exercise training. Later exercise training increased mitochondrial biogenesis in all groups. In conclusion, although the response to exercise training remains intact, early exercise training in rats born small does not have a reprogramming effect to prevent deficits in skeletal muscle markers of mitochondrial biogenesis in adulthood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a strong inverse relationship between a females own birth weight and her subsequent risk for gestational diabetes with increased risk of developing diabetes later in life. We have shown that growth restricted females develop loss of glucose tolerance during late pregnancy with normal pancreatic function. 


The aim of this study was to determine whether growth restricted females develop long-term impairment of metabolic control after an adverse pregnancy adaptation. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) in late pregnancy (E18) in F0 female rats. F1 Control and Restricted female offspring were mated with normal males and allowed to deliver (termed Ex-Pregnant). Age-matched Control and Restricted Virgins were also studied and glucose tolerance and insulin secretion were determined. Pancreatic morphology and hepatic glycogen and triacylglycerol content were quantified respectively.

Restricted females were born lighter than Control and remained lighter at all time points studied (p<0.05). Glucose tolerance, first phase insulin secretion and liver glycogen and triacylglycerol content were not different across groups, with no changes in β-cell mass. Second phase insulin secretion was reduced in Restricted Virgins (-34%, p<0.05) compared to Control Virgins, suggestive of enhanced peripheral insulin sensitivity but this was lost after pregnancy. Growth restriction was associated with enhanced basal hepatic insulin sensitivity, which may provide compensatory benefits to prevent adverse metabolic outcomes often associated with being born small. A prior pregnancy was associated with reduced hepatic insulin sensitivity with effects more pronounced in Controls than Restricted.

Our data suggests that pregnancy ameliorates the enhanced peripheral insulin sensitivity in growth restricted females and has deleterious effects for hepatic insulin sensitivity, regardless of maternal birth weight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uteroplacental insufficiency resulting in intrauterine growth restriction has been associated with the development of cardiovascular disease, coronary heart disease and increased blood pressure, particularly in males. The molecular mechanisms that result in the programming of these phenotypes are not clear. This study investigated the expression of cardiac JAK/STAT signalling genes in growth restricted offspring born small due to uteroplacental insufficiency. Bilateral uterine vessel ligation was performed on day 18 of pregnancy to induce growth restriction (Restricted) or sham surgery (Control). Cardiac tissue at embryonic day (E) 20, postnatal day (PN) 1, PN7 and PN35 in male and female Wistar (WKY) rats (n=7-10 per group per age) was isolated and mRNA extracted. In the heart, there was an effect of age for males for all genes examined there was a decrease in expression after PN1. With females, JAK2 expression was significantly reduced after E20, while PI3K in females was increased at E30 and PN35. Further, mRNA expression was significantly altered in JAK/STAT signalling targets in Restricteds in a sex-specific manner. Compared with Controls, in males, JAK2 and STAT3 were significantly reduced in the Restricted, while in females SOCS3 was significantly increased and PI3K significantly decreased in the Restricted offspring. Finally, there were specific differences in the levels of gene expression within the JAK/STAT pathway when comparing males to females. Thus, growth restriction alters specific targets in the JAK/STAT signalling pathway, with altered JAK2 and STAT3 potentially contributing to the increased risk of cardiovascular disease in the growth restricted males.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Recent work showed an increased risk of cervical and lumbar intervertebral disc (IVD) herniations in astronauts. The European Space Agency asked the authors to advise on the underlying pathophysiology of this increased risk, to identify predisposing factors and possible interventions and to suggest research priorities. METHODS: The authors performed a narrative literature review of the possible mechanisms, and conducted a survey within the team to prioritize research and prevention approaches. RESULTS AND CONCLUSIONS: Based on literature review the most likely cause for lumbar IVD herniations was concluded to be swelling of the IVD in the unloaded condition during spaceflight. For the cervical IVDs, the knowledge base is too limited to postulate a likely mechanism or recommend approaches for prevention. Basic research on the impact of (un)loading on the cervical IVD and translational research is needed. The highest priority prevention approach for the lumbar spine was post-flight care avoiding activities involving spinal flexion, followed by passive spinal loading in spaceflight and exercises to reduce IVD hyper-hydration post-flight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Interventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR. METHODS: In 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum. RESULTS: Seventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63-76 % for direct patient consultation, and 43-60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %. CONCLUSION: Delivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Being born small for gestational age increases the risk of developing adult cardiovascular and metabolic diseases. This study aimed to examine if early-life exercise could increase heart mass in the adult hearts from growth restricted rats. Bilateral uterine vessel ligation to induce uteroplacental insufficiency and fetal growth restriction in the offspring (Restricted) or sham surgery (Control) was performed on day 18 of gestation in WKY rats. A separate group of sham litters had litter size reduced to five pups at birth (Reduced litter), which restricted postnatal growth. Male offspring remained sedentary or underwent treadmill running from 5 to 9 weeks (early exercise) or 20 to 24 weeks of age (later exercise). Remarkably, in Control, Restricted, and Reduced litter groups, early exercise increased (P < 0.05) absolute and relative (to body mass) heart mass in adulthood. This was despite the animals being sedentary for ~4 months after exercise. Later exercise also increased adult absolute and relative heart mass (P < 0.05). Blood pressure was not significantly altered between groups or by early or later exercise. Phosphorylation of Akt Ser(473) in adulthood was increased in the early exercise groups but not the later exercise groups. Microarray gene analysis and validation by real-time PCR did not reveal any long-term effects of early exercise on the expression of any individual genes. In summary, early exercise programs the heart for increased mass into adulthood, perhaps by an upregulation of protein synthesis based on greater phosphorylation of Akt Ser(473).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Present study provides clinical evidence of existence of a functional loop involving miR-21 and let-7a as potential regulators of aberrant STAT3 signaling recently reported by our group in an experimental setup (Shishodia et al. BMC Cancer 2014, 14:996). The study is now extended to a set of cervical tissues that represent natural history of human papillomavirus (HPV)-induced tumorigenic transformation. MATERIALS AND METHODS: Cervical tissues from histopathologically-confirmed pre-cancer (23) and cancer lesions (56) along with the normal control tissues (23) were examined for their HPV infection status, expression level of miR-21 & let-7a and STAT3 & pSTAT3 (Y705) by PCR-based genotyping, quantitative real-time PCR and immunoblotting. RESULTS: Analysis of cancer tissues revealed an elevated miR-21 and reduced let-7a expression that correspond to the level of STAT3 signaling. While miR-21 showed direct association, let-7a expression was inversely related to STAT3 expression and its activation. In contrast, a similar reciprocal expression kinetics was absent in LSIL and HSIL tissues which overexpressed let-7a. miR-21 was found differentially overexpressed in HPV16-positive lesions with a higher oncoprotein E6 level. Overexpression of miR-21 was accompanied by elevated level of other STAT3-regulated gene products MMP-2 and MMP-9. Enhanced miR-21 was found associated with decreased level of STAT3 negative regulator PTEN and negative regulator of MMPs, TIMP-3. CONCLUSION: Overall, our study suggests that the microRNAs, miR-21 and let-7a function as clinically relevant integral components of STAT3 signaling and are responsible for maintaining activated state of STAT3 in HPV-infected cells during cervical carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using data from the third National Family Health Survey (NFHS-3) on currently married fecund women who have had at least one birth during 2001–2002 and Cox-proportional hazard models, this study examines the less researched association between women's autonomy and birth-to-conception intervals in India. It also examines whether women's autonomy mediates or moderates the relationship between education and birth-to-conception interval. Our results indicate that after adjusting for demographic and socioeconomic factors, women's autonomy was a significant predictor of birth-to-conception intervals, with higher autonomy positively associated with larger birth-to-conception intervals. Education of women was also independently associated with longer birth-to-conception intervals. However, this study did not provide any support to the general perception that women's autonomy mediates the association between women's education and birth-to-conception interval. Women's autonomy rather than being a mediator acted as a moderator in this association. Policy measures to increase the spacing between births should emphasise not only improving the education of women but also their autonomy.